Spectral Analysis of the Bounded Linear Operator in the Reproducing Kernel Space W2m(D)
نویسندگان
چکیده
We first introduce some related definitions of the bounded linear operator L in the reproducing kernel space W(2)(m)(D). Then we show spectral analysis of L and derive several property theorems.
منابع مشابه
Fisher’s Linear Discriminant Analysis for Weather Data by reproducing kernel Hilbert spaces framework
Recently with science and technology development, data with functional nature are easy to collect. Hence, statistical analysis of such data is of great importance. Similar to multivariate analysis, linear combinations of random variables have a key role in functional analysis. The role of Theory of Reproducing Kernel Hilbert Spaces is very important in this content. In this paper we study a gen...
متن کاملSolving Fuzzy Impulsive Fractional Differential Equations by Reproducing Kernel Hilbert Space Method
The aim of this paper is to use the Reproducing kernel Hilbert Space Method (RKHSM) to solve the linear and nonlinear fuzzy impulsive fractional differential equations. Finding the numerical solutionsof this class of equations are a difficult topic to analyze. In this study, convergence analysis, estimations error and bounds errors are discussed in detail under some hypotheses which provi...
متن کاملThe solving linear one-dimemsional Volterra integral equations of the second kind in reproducing kernel space
In this paper, to solve a linear one-dimensional Volterra integral equation of the second kind. For this purpose using the equation form, we have defined a linear transformation and by using it's conjugate and reproducing kernel functions, we obtain a basis for the functions space.Then we obtain the solution of integral equation in terms of the basis functions. The examples presented in this ...
متن کاملError estimation for nonlinear pseudoparabolic equations with nonlocal boundary conditions in reproducing kernel space
In this paper we discuss about nonlinear pseudoparabolic equations with nonlocal boundary conditions and their results. An effective error estimation for this method altough has not yet been discussed. The aim of this paper is to fill this gap.
متن کاملSolving multi-order fractional differential equations by reproducing kernel Hilbert space method
In this paper we propose a relatively new semi-analytical technique to approximate the solution of nonlinear multi-order fractional differential equations (FDEs). We present some results concerning to the uniqueness of solution of nonlinear multi-order FDEs and discuss the existence of solution for nonlinear multi-order FDEs in reproducing kernel Hilbert space (RKHS). We further give an error a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 2014 شماره
صفحات -
تاریخ انتشار 2014